首页 \ 招考资讯 \ 正文

平面与平面垂直的判定 有哪些方法

2024-11-13 05:03

一般地,两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直。一个平面过另一个平面的垂线,则这两个平面垂直。定义法:如果两个平面所成的二面角为90°,那么这两个平面垂直。

平面与平面垂直的定义是什么

平面与平面垂直的定义‌:若两个平面的二面角为直二面角(即平面角为90°),则这两个平面互相垂直。‌

‌平面与平面垂直的判定定理‌:

‌定义法‌:如果两个平面所成的二面角为90°,那么这两个平面垂直。

‌判定定理‌:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直。

‌推论‌:如果一个平面的垂线平行于另一个平面,那么这两个平面互相垂直。

‌推论‌:如果两个平面的垂线互相垂直,那么这两个平面互相垂直。

面面垂直的性质

面面垂直的性质定理有:1、如果两个平面相互垂直,那么在一个平面内垂直于它们交线的直线垂直于另- 一个平面。2、如果两个平面相互垂直,那么经过第一个平面内的一-点作垂直于第二个平面的直线在第一一个平面内。3、如果两个相交平面都垂直于第三个平面,那么它们的交线垂直于第三个平面。

一、性质:

1、若两平面垂直,则在一个平面内与交线垂直的直线垂直于另一平面。

2、若两平面垂直,则与一个平面垂直的直线平行于另一平面或在另一平面内。

二、其判定定理是:一个面如果过另外一个面的垂线,那么这两个面相互垂直。即一个平面过另一平面的垂线,则这两个平面相互垂直。

定义:若两个平面的二面角为直二面角(平面角是直角的二面角),则这两个平面互相垂直。

面面垂直的判定定理如下:

一个平面过另一平面的垂线,则这两个平面相互垂直。

几何描述:若a⊥β,a⊂α,则α⊥β

证明:任意两个平面关系为相交或平行,设a⊥β,垂足为P,那么P∈β

∵a⊂α,P∈a

∴P∈α

即α和β有公共点P,因此α与β相交。

设α∩β=b,∵P是α和β的公共点

∴P∈b

过P在β内作c⊥b

∵b⊂β,a⊥β

∴a⊥b,垂足为P

又c⊥b,垂足为P

∴∠aPc是二面角α-b-β的平面角

∵c⊂β

∴a⊥c,即∠aPc=90°

根据面面垂直的定义,α⊥β。

一键复制全文保存为WORD
上一篇:职业技术学院有什么专业 哪些专业好就业
下一篇:西部迁移计划有哪些地区 什么城市受益

相关推荐